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A two-dimensional stability analysis of the flow in a straight alluvial channel has 
been carried out, using the vorticity transport equation. In  the analysis an 
attempt has been made to account for the influence of gravity on bed-load 
transport, and this turned out to change the stability quite significantly. 

In  the case of instability, the further growth of the dunes has been investigated 
using a second-order approximation, This nonlinear theory explains the experi- 
mental fact that the dunes very soon become asymmetric. 

1. Introduction 
Mathematical models describing the development of sand waves in alluvial 

streams, involving more or less realistic physical idealizations, have been sug- 
gested by several authors during the last decades. The first important step in 
recent years was made by Anderson (1953), who tried to explain the physical 
properties of fully developed sand waves by considering the flow of an ideal fluid 
over a sinusoidal bottom, assuming the sediment transport to be as bed load only. 

Kennedy (1963) considered a two-dimensional potential flow over a sinusoidal 
bed, regarding the bed wave formation as a stability problem. In order to study 
instability he introduced the quantity 6, which is the distance by which the local 
sediment transport rate lags behind the local velocity at  the bed. There is great 
uncertainty in connexion with the physical interpretation and evaluation of 6. 
Hayashi (1970) tried to reduce this uncertainty by considering the effect of the 
local bed inclination on the sediment transport. 

Reynolds (1965) continued and extended Kennedy’s theory and introduced 
a three-dimensional stability analysis. This was later investigated further by 
Engelund & Fredspe (1971), still using potential-flow theory, but assuming a 
definite sediment transport model (suspension). 

A physically reasonable model of the sediment transport was suggested in a 
paper by Engelund (1970). The model describes the two-dimensional flow of a real 
fluid by a vorticity transport equation and the transport of sediment in suspension 
by a diffusion equation. Engelund’s theory explains physically the phase shift 
between the flow rate and the transport of sediment as being partly a result of the 
variation in the amount of sediment in suspension and partly a result of the fact 
that the friction itself introduces a phase shift between the bed form and the shear 
stress along the bottom. 
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The present paper may be regarded as a continuation of this work by Engelund. 
I n  the first sections, a linear stability analysis is carried out, the effect of the 
vorticity in the basic flow is discussed and the results are compared with previous 
results. The effect of the local bed inclination on the local rate of bed-load trans- 
port is taken into account. I n  the later sections, the growth of dunes in the un- 
stable regions is investigated in order to obtain an explanation of the asymmetric 
growth. 

Exner (1920, see Leliavsky 1955, p. 26) and Reynolds (1965) have explained 
this phenomenon by using a one-dimensional nonlinear flow model. In  the present 
paper, the problem is considered from a different point of view. Using a second- 
order perturbation theory, the asymmetric distribution of the shear stress over 
a wavy bed is shown to cause the asymmetric form of the sand wave. 

2. Analytical solution of the vorticity transport equation 

(1970). The eddy viscosity B is assumed to be constant and given by 
The present analysis is mainly based on the equations suggested by Engelund 

B = 0.077uf0D, (1) 

where D is the depth and L;, is the friction velocity in the undisturbed flow, 

Here, ro denotes the bed shear stress and p the fluid density. 
Because of the assumption (1) it is necessary to introduce a fictitious slip 

velocity Ub, for the basic velocity profile U .  This is found by matching the profile 
of the outer constant-stress layer with the correct velocity profile near the bottom. 
I n  Engelund's paper the outer solution was given by a parabola obtained by 
integration of the flow equations. To simplify the subsequent analysis, this 
parabola is replaced by a cosine: 

where Us, is the surface velocity, x2 the co-ordinate perpendicular to the mean 
flow direction and /3 a constant. The velocity profile is shown in figure 1. 

By putting 
(4) 

we obtain a very close numerical approximation to the parabola. The slip velocity 
ubo a t  the bed is determined from (3) : 

UbO = q 0  cosp. 

This slip velocity must satisfy the matching condition a t  the bed, which is 

Ub,/uf, = 1.9+ 2.51n (DIE') = K ,  ( 5 )  

where k' is the equivalent sand roughness, suggested by Engelund (1970) to be 
2*5d, where d is the diameter of the sediment grains. 

The perturbed flow is described by the vorticity transport equation 

dw/dt = BV'W, (6) 
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FIGURE 1. The velocity distribution in the uniform channel flow 
and definition sketch of the perturbed flow. 

where the vorticity w is defined by 

2w = av,/ax, - av,/ax,, (7) 

in which v1 and v 2  are the velocity components and x, is the co-ordinate in the 
mean flow direction. 

If the stream function 9 is defined by 

vl = - a@px,, 0, = a@lax,, 
the vorticity is given by 

Inserting (8) and (9) in ( 6 )  we get 
w = * 0 2 $ .  

a$ a w  a@aV2lG. av29 - €V4@. +-- +-- --- 
ax, ax, ax, ax, at 

If the flow is assumed to be periodic, the perturbation h of the sand bed, the 
perturbation 7 of the surface and the perturbation $ of the flow can be written as 

h = h, exp (ikD(5, - atlo)}, 

7 = 7, exp ( i W 5 , -  at/D)>, 

J = &oh, f (52)  exp { i W 5 1 -  at/D)>, 

(11) 

(12) 

(13) 

where h, and 7, are the amplitudes of the perturbation of the bed and surface, 
respectively. ICD is the dimensionless wavenumber, f is an unknown function, 
a is the complex migration velocity of the bed waves, a = a, + iai, and ti = xi/D 
are the dimensionless space variables. 

By assuming the perturbation parameter h,/D to be infinitely small, the 
linearized equation in f is obtained from ( 10) : 

preserving only the dominant term on the right-hand side and assuming that 
la1 < U .  All the differentiations are with respect to [,. Putting e = 0 in (14), the 
solution turns out to be 
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c1 and c2 being constants. This is the outer inviscid solution, which is seen to vary 
slowly with c2. Since the inner frictional solution to (14) is of the boundary-layer 
type, i.e. rapidly damped, we may, on the right-hand side of (14), take U = U,, 
where U, is a constant typical velocity in the interval U,, < U, < Us,. Now (14) is 
a linear differential equation with constant coefficients. The characteristic 
equation is ikD2U0 R2 + ikD2U, {(kD)2-p2}  = 0. R4-- 

& € 

Next, we define 

The roots of (16) are 
€* = e/U,D = 0*077V,,/UO < I .  

(kD)2 - p2 + O(€*/kD), 

+ (ikD/s*)g + O((e*/kD)*), 
F [ ( kDj2 -/?'I* + O(€*/kD). 

As long as (s*/kD)t  1, the solution of (14) can be written as 

f = c,exp {f;2[(kD)2 - /321g} + c2exp { - E 2 [ V m 2  - P 2 N  
+ c3 exp { - 52(ikD/~*)4}  + c,exp {t;,(ikD/e*)+}, (19) 

c3 and c4 being constants. The first two terms constitute the inviscid outer 
solution, as given by (15). The third term is damped very quickly away from the 
bed. Here, the value of U, has to be taken as U,, in the definition of e*. 

The last term is a frictional term, which is significant only in a small region 
close to the surface. Here, the value of U, is to be taken as V,, in e*. As expected, 
this last term affects the flow only slightly. The following linear stability analysis 
has been carried out with and without this term with no difference in the results, 
so in the following this term is neglected in order to reduce the calculations. 

3. Transport of sediment 
Sediment is transported in two different ways, as bed load and in suspension. 

The rate qb of bed-load transport is given by the relation (Meyer-Peter & Muller 

(20) 
1948) 

where s denotes the relative density of the sediment grains, g the acceleration due 
to gravity and B the Shields parameter, which can be written as 

0, = qb/{(s - I )  gd3}4 = 8(8 - 0.047)8, 

0 = 7d2/(s - 1) gd3. (21) 

In this form, the parameter represents the ratio between the agitating and the 
stabilizing forces on a sediment grain in the bed. Tis the shear stress at  the bottom, 
given by the expression 

7/p = s(av,/ax2 + av2/ax,). (22) 
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It should be mentioned here that the Meyer-Peter formula includes only shear 
stress due to the ‘grain resistance’. In  the case of a bottom which is only slightly 
perturbed, no drag resistance exists. Here, it is correct to use (22) in the definition 
of 8. 

In  the well-established relation (20), only the dynamic influence of the shear 
stress a t  the bottom is regarded as an agitating force. This is in accordance with 
the fact that the experiments from which this equation was obtained were carried 
out in a nearly horizontal flow. As shown experimentally by Lysne (1969), gravity 
is also a contributing factor to the grain force when the bed is sloping. In  the 
analysis the effect of gravity is taken into account in the following way. The 
agitating shear force in the dimensionless Shields parameter is rd2. When the 
bed is sloping, the additional gravity force component is given by p W I ,  where W 
is the submerged weight of the grains, I is the slope of the bed and p a dynamic 
friction coefficient, 0 < p < 1. The Shields parameter can now be written as 

In  (23) the area and volume coefficients are included in the constant p. Hence the 
order of p must be about 0.1. 

At low Froude numbers, the bed load is the dominating transport mechanism, 
and in this regime the dunes are formed. At higher flow rates where the antidunes 
develop, the sediment is increasingly transported in suspension. This has been 
taken into account in the present linear stability analysis, but for a detailed 
description the reader is referred to the paper by Engelund (1970) or to the paper 
by Engelund & Freds~e (1971), where the suspension equations are solved 
analytically, using potential theory. 

The total sediment load qr is the sum of the bed load q b  and the suspended load 
qs. For the total load we have the sediment continuity equation 

in which n is the porosity of the sand bed and cis the concentration of suspended 
sediment. The last term accounts for the sediment stored in suspension. In  the 
case of bed load only, (24) reduces to 

a q b / a X 1  = - (1 - n) ah/X 

4. Boundary conditions 
(i) The kinematic condition a t  the sand bed is 

d h  ah ah h _ -  - -+v,- = v2 at c2 = o. 
at at ax, 

Within the framework of a linear theory and assuming that 
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(ii) The corresponding kinematic condition a t  the surface in the linear case is 
given by 

(iii) 7 may be eliminated from (28) by considering the dynamic boundary 
condition a t  the free surface. This condition states that the pressure a t  the surface 
is constant. Then, in the quasi-steady flow, the Bernoulli equation for the surface 
streamline is given by 

7 + (v; + v;)/2g = constant a t  5, = 1 + q/D. (29) 

The linear form of (29), together with (28)) gives 

where Fs is the Froude number based on the surface velocity: SS = U,,/(gD)*. 

condition ( 5 )  is assumed also to be valid in the perturbed flow, i.e. 
(iv) The last condition is related to the shear stress along the bed. The matching 

U,,/U, = K a t  g2 = h/D. (31) 

U, may be determined from (2) and (22)) and the linear form of (3  1)  then becomes 

The constants cl, c, and c3 in (19) are determined from the three boundary 
conditions (27)) (30) and (32). (As mentioned before, the last term in (19) is 
neglected.) 

5. Linear stability analysis 
Having obtained the function f, it is possible to carry out a stability analysis. 

The migration velocity a is found from (24). If the imaginary part ai is positive, 
the perturbation will grow, indicating instability. For ai negative, the perturba- 
tion will be attenuated, corresponding to a stable, plane bed. The value of ai 
depends on the parameters F, ICD and V/V, ,  where V is the mean velocity and 
9 = V/(gD)t the Froude number based on the mean velocity. 

For a constant value of V/V,, it is possible to construct stability diagrams. TWO 
such diagrams are shown in figure 2. In  figure 2 (a ) ,  the effect of gravity on the bed 
load is neglected. In  figure 2 ( b ) ,  ,u has the value 0.1. It is seen that only in the 
dune region are the stability limits changed significantly by the influence of 
gravity. This is in accordance with the fact that bed load is the dominating 
transport mechanism in the dunal regime, while the formation of antidunes is 
almost exclusively associated with sediment transported in suspension. The 
broken lines indicate the wavenumber which for a given Froude number has the 
largest growth rate, expressed by ICD x ai. 

Figure 3 shows the effect of changes in ,u on the stability region. Again, the 
broken lines indicate the largest growth rates. 
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FIGURE 2. Stabilitydiagrams. VjU,,, = 20. (a)p = 0. ( b )  p= 0.1. Experiments by Guy et al. 
(1966): x , antidunes; 0 ,  standing waves; 0, dunes; LL, lower limit to sediment transport. 

Unfortunately, i t  is difficult to compare the results from the stability analysis 
with observations in the dune region. The reason is that observations are made in 
the fully developed state, while the theory assumes a transient state. In  the flow 
where the dunes are fully developed, the flow resistance is increased considerably 
compared with the plane bed situation. Hence, in natural streams, or in laboratory 
channels of the open-circuit type where the depth is free to vary, the depth 
increases, while the mean velocity and the Froude number decrease as the dune 
heights increase. 

The best available data concerning mature dunes are the Fort Collins data 
(Guy, Simons & Richardson 1966). From the description of the operation pro- 
cedure, it may be assumed that depth and discharge are kept constant during the 
growth, so that the Froude number remains constant. If  it  is assumed that the 
wavelength is preserved during the growth, kD also keeps its initial value. In  
fact, the wavelength may be increased a little during the growth, but as long as we 
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FIGURE 3. The stability region for dunes with different values of p. V/U,, = 17. 

are concerned with dunes (as opposed to ripples), the assumption is acceptable. In  
figure 2, data for dunes are plotted for the grain sizes 0-27 mm and 0.28 mm. They 
fit reasonably well in the unstable region. It is seen that it is important to take the 
influence of gravity on the bed load into account. This explains the moderate 
value of kD, which is about 0.50 for the sand considered. If the effect of gravity is 
neglected, the stability analysis predicts the preferred wavenumber to be a t  least 
ten times greater (cf. figure 2 a) .  

In  the case of antidunes, the expansion loss is often negligible, and here the 
comparison with mature data should be expected to be better. I n  figure 2, data 
are plotted for sand with grain diameters between 0-19 and 0.47mm (Guy et al. 
1966). The results are within the unstable region and are close to the curve 
indicating the maximum growth rate. 

In  the case of coarser sand (0.93 mm), the mean value of kD in the dune region 
is about 0.9. This is in accordance with the theory, as seen in figure 4, where the 
stability regions for fine sand ( V/U,, = 20) and for coarser sand ( V/%, = 17) are 
compared. The two curves are obtained from figure 2 (V/U,, = 20) and figure 3 

It should be noticed that the data for the ripples have been omitted above, 
because the formation of ripples is not covered by the present theory. 

Finally, in this section the importance of the vorticity in the basic profile is 
investigated, partly because of the higher-order approximation used in the 
following sections. In  figure 5 the stability limits in the dune region are shown, 
bed load being the only transport mechanism. ,u is put equal to zero, only in order 
to isolate the influence of the flow on the bed. In  fact, the use of a constant velocity 
profile (as was done by Engelund 1970) instead of the correct profile means only 
a very moderate change. The explanation is that it is the phase shift caused by the 
frictional term which is responsible for the instability of the bed in all cases where 
the sediment is transported mainly as bed load, and that the moderate variation 
of the basic velocity profile does not affect this phase shift significantly. The 
bottom velocity U, is determined by the condition ( 5 ) .  As long as this boundary 
condition is maintained in the perturbed flow, the dynamic conditions close to the 
bed are still reasonably described. 

(V/u,, = 17) .  
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FIGURE 4. Changes in the stability regions with V / U y 0 .  The curves 
are taken from figures 2 and 3. 

Stable - --- I- --- 
Unstable 

I 

0 1 .o 
kD 

FIGURE 5 .  Comparison of stability limits in the dune region. p = 0. -, constant basic 
velocity profile ; - - - - , rotational basic velocity profile. 

6. Second-order approximation 
In  the case of instability, the sand waves grow with time but in essentially 

different ways depending on whether the waves migrate as dunes or as antidunes. 
While antidunes when growing still ha1 e a regular symmetric sinusoidal bed form, 
the dunes rapidly obtained an asymmetric form, as was demonstrated experi- 
mentally by Raichlen & Kennedy (1965). As mentioned in the introduction, 
Exner (1920, see Leliavsky 1955, p. 26) and Reynolds (1965) have suggested this 
to  be a nonlinear effect of a finite amplitude. Using a one-dimensional model 
Exner and Reynolds found that the velocity of the sand wave increases with the 
local height h of the sand wave, and further concluded that an originally sym- 
metric wave after some time tends to be forward leaning. 
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In  fact, Exner and Reynolds considered sand waves which are damped with 
time rather than growing, and their considerations are therefore not relevant in 
the present study. Further, it  is possible to describe a symmetric sand wave which 
is travelling downstream without changing form by using a one-dimensional 
nonlinear flow model, in which the two-dimensional curvature effect of the flow 
pattern is taken into account (Engelund 1971). This suggests that, in order to 
give a reasonably accurate picture of the complicated nonlinear flow over a wavy 
bed, a two-dimensional flow description is needed. 

The present model is an attempt to develop such a two-dimensional description 
to the second order of approximation. The asymmetric growth is found to be 
caused by the phase shift between the erosion and the mean velocity. This phase 
shift also explains why not all disturbances in the linear stability analysis are 
neutral. 

As we are interested in the growth of dunes, the sediment is assumed to be 
transported as bed load only. Hence, the phase shift between erosion and mean 
velocity is caused by the internal friction of the fluid. 

The calculation of the asymmetric growth is performed by extending the linear 
theory described in the first sections to a second-order approximation. The 
perturbation of the sand bed is still assumed to be very small. The changes in the 
bed shear-stress distribution caused by an arbitrary perturbation h(x,, t)  of the 
bottom are found and using the fundamental sediment continuity equation (25) 
(bed load being the only transport mechanism) the form of the sand wave h is 
related to the shear-stress distribution caused by the perturbation h. In  this way, 
it is possible to calculate the form of h, taking into account the fact that the wave 
is travelling downstream with a velocity u,. and growing with time. 

The rotation of the basic profile (3) is neglected. This is done to simplify the 
analysis and the numerical calculations, whose details, in a higher-order approxi- 
mation, often tend to hide the general trend. The assumption is justified in 0 5. 
Equation (3) can now be written as 

II. = - vx,. (33) 

Now, we assume that, as long as the perturbation is small, the boundary condi- 
tions and the nonlinear vorticity transport equation can be expressed as power 
series in y, which is the amplitude in the linearized problem, 

i.e. 
(35) 

Here, yh,, is the same term as h in (1 l), i.e. 

h,, = cos{kD(~, - u,t/D)) exp (kDait/D), (37) 
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and similarly $(,) corresponds to (33) and $(,) to (13), which can be expanded into 
the real form necessary in the higher-order theory to yield 

&+kD(C,-a,t/D) exp(kDait/D) I 

The development of (35) and (36) is a normal regular perturbation problem. 
To be correct, it is also necessary to develop the migration velocity a, and 
the growth rate a,, which depend on the parameters kD, 9 and V/U,. As in 
normal Stokes waves, changes in a, and ai will only take place in a third-order 
approximation. 

The definition (17 )  of c* is given by 

€* = o~077ufo/v, (39) 

and now the replacement of U by U,, in (18) is not an approximation. Thereby, 
the error in determining the root of the friction term is O((e*/kD)&), compared 
with that in (18). 

7. Second-order flow equation, boundary conditions and sediment 
continuity equation 

The second-order flow equation is found by inserting (38) in the complete 
vorticity transport equation (10) and comparing the coefficient with y2. We get 
the following inhomogeneous differential equation : 

In the same way, the second-order boundary conditions have been found. The 
kinematic condition a t  the bottom is 

in which the following abbreviations have been introduced: 
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The boundary condition equivalent to (30), which is a combination of the 
kinematic condition and the dynamic Bernoulli equation a t  the surface, is 

The last boundary condition of the second-order approximation 
from (31). The condition equivalent to (32) is 

at  $, = 1. 

(42) 

is obtained 

a t  E, = 0. 

(43) 

All the inhomogeneities in the differential equation (40) and the boundary 
equations (41), (42) and (43) are products of terms of the form 

f i ( t 2 )  '0s (kD(51- ar t/D)> ~ X P  (kai t )  
f2(52)  sin (kD (t1- ar t/D)} ~ X P  (kai t 

f3($2) C O S P W $ 1 -  a?.t/D)}exp wait), 

or 

By multiplying such terms by each other, products of the form 

f4(<2) sin{2kD(E1- art/D)}exp (2kait) 

or f & 2 )  

are obtained. 
In  order to produce theseinhomogeneities, it  is seen that the second-order wave 

h(g must migrate downstream at the same velocity ar as the first-order wave h(0, its 
wavenumber being, however, twice that of the first-order wave. Furthermore, it 
must grow exponentially with an amplification factor twice that of the first-order 
wave, i.e. 

h(2) = [h, cos (ZkD(t, - u,t/D)} + h, sin {2kD(t1 - art/D} + h,] exp (2kDait/D), 

h,, h, and h, being constants. 
If the definition (34) of y is changed to 

y = (h,/D) exp (kDa, t /D)  

all the growth with time is now contained in the development parameter, and it 
is seen that the influence of the higher-order terms increases with time. Since it is 
assumed that the perturbation of the bed is small, y < 1, it is seen that the present 
theory is valid only a t  small values of kctit, when the fist-order terms dominate 
the higher-order terms. 

Finally, the sediment continuity equation (25) (bed load being the only trans- 
port mechanism) must be satisfied for all values of y.  As mentioned already, the 
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migration velocity and the growth velocity are found from the first-order 
approximation and are not changed in a second-order approximation. The real 
first-order form of ( 2 5 )  is 

( - n, {ar ah(l)/axl - lcuih(l)) = aqb(l) /axl  * 

- n, - 2kai '(2)) = a4b(2)/ax1. (45) 

(44) 

In  the same way, the second-order form turns out to be 

qb(l) and qb(2) are found from ( 2 0 ) .  8, defined by ( 2 1 ) ,  is written, using ( 2 ) ,  as 

e =  
Here, the quantity 

is not changed in the perturbed flow, while the local value of U b  must be inserted 
in (46). Now, (20 )  gives 

Comparing the coefficients of yo in (47), we get 

qb(0) = ( ~ - O ~ 0 4 7 + , U ~ o ) p 8 { ( ~ -  1)d3}*, 

in which I,, in the unperturbed flow is given by 

I. = ( u f 0 / V ) 2 P .  

Comparing the coefficients of y 1  and of y2,  we obtain 

and 

(49) 

Together with (45), (49) gives the second-order continuity equation for the 
sediment. 

8. Solutions 
The flow equation (40) is solved in the same way as ( 1 0 ) .  The complete solution 

consists of the particular solution to the inhomogeneous equation and the solutions 
to the homogeneous equation. 
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FIGURE 6. The variation of q5 with (a )  kD (9 = 0.5) and 
( b )  9 ( k D  = 0-3). VjU,, = 20. 

The inhomogeneous term on the right-hand side of (40) turns out to be 

= a1 exp { [ k ~  - (IcD/~e*)t] c2} cos {2kD(t1 - u,t/D) - (kD/2e*)+C2} 

+ a2 exp {[kD - (kD/2e*)4] k,} sin {ZkD(& - a,t/D) - (kD/2e*)* k2} 
+a,exp{[-kD- (kD/2e*)3]5 , )~os(2kD(5~-u, t /D)  - (kD/2e*)3t2} 

+a4exp{[ -kD- (kD/2e*)3]5,}sin{ZkD(~,-a,t/D) - (kD/2e*)*c2}+a5, 

(50)  

where the coefficients al, a2, a3, a4 and a5 are determined by insertion in (40). The 
particular solution $(2)p is of exactly the same form as IE and is easily found. The 
solution to the homogeneous part of (40) has the following form : 

$(2)h = V q e l  exp (2kD52) + e2 exp ( - 2 k a - 2 ) )  cos (ZkD(k1- .,t/D)} 
+ VD{fl  exp (2kD6,) + f 2  exp ( - 2kD5,)) sin {2kD(5, - u,t/D)} 
+ VDe, exp { - (kD/e*)+ &} cos { + (kD/e*)* c2 + 2kD(t1 - u,t/D)} 

+ VDf3exp{ - (kD/e*)$c2,)sin{- (kD/e*)k2+2kD(cl--,t/D)}, (51) 

el, e2, e3,  fi, f 2  and f 3  being constants. 
By inserting the total solution for $(2) and the expression for Iq2) in the three 

boundary conditions, (41), (42) and (43), and the second-order continuity 
equation for the sediment and comparing the coefficients of cos(ZkD(<, - u,t/D)} 
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FIGURE 7. The variation of hT with kD. 9 = 0.3 and V / u , ,  = 20. 
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FIGURE 8. The sum of the first- and second-order waves. 4 = @. 

and of sin{2kD(c1 - a,t/D)}, we obtain eight linear inhomogeneous equations in 

It is also possible to determine h3 by comparing the constants in the boundary 

By re-writing h(2) as 

e l ,  e2, e3, f l ,  f2, f 3 ,  h, and h2. 

conditions, but this is of no interest in this connexion. 

4 2 )  = h, COS {2kD((1+ 7T + $ - a,t/D)> + h3, 

where tan q5 = h,/h, and h, = (h: +hi)+, it is easy to illustrate the asymmetric 
development of the dunes. In  figure 6, the variation of q5 with the wavenumber 
and the Froude number is shown. In  the entire region of interest, q5 always turns 
out to be a positive quantity, i.e. the sum of the first- and second-order waves is 
steeper downstream than upstream of the crest; see figure 8. Although the wave is 
also asymmetric when the influence of the gravity on the bed load is neglected, 
the obliquity increases considerably when this influence is taken into account. 

In  figure 7, the variation in h, with kD is shown. This quantity is not of any 
great interest, because it is changing with time. However, it indicates how quickly 
the asymmetry increases. The value of h, is moderate. It might be expected to 
be very large because of the large friction gradient a t  the bottom. In the boundary 
conditions, this large gradient is almost cancelled out by the particular solution 
$(2)p,  which explains the moderate value of h,. 

In  figure 8 ,  an example of an asymmetric wave is shown; h - yho + y2h(,). q5 has 
the value in, which for instance is the case if the Froude number is equal to 0.3, 
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V/V,, equal to 20 and ICD equal to 0.3; see figure 6. This composition of 9, kD and 
V/V,, is in agreement with the maximum growth rate of dunes; see figure 2. 

As a closing remark on the second-order approximation, it should be mentioned 
that, if the internal friction of the fluid is neglected, h(2) turns out to be zero, 
corresponding to the velocity a t  the bottom and the mean velocity being in phase. 
That is, if the internal friction is neglected, a symmetric wave is the only possible 
solution in the second-order approximation. 

9. Conclusion 
In  the linear stability analysis, it  is shown that the influence of gravity plays 

an important role with respect to the formation of dunes. In  a further, second- 
order approximation, the phase shift between the erosion and the mean velo- 
city caused by the internal friction of fluid explains why the dunes develop 
asymmetrically. 

This article forms part of the author's Ph.D. study under the supervision of 
F. A. Engelund, to whom the author is grateful for stimulating discussions. 
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